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 Abstract 

In this paper a novel theory is presented in order to explain the existence of the energy band and 

energy band gap in a perfect solid state crystal lattice. It is assumed that the solid state crystal lattice 

consists of a lattice of equidistant Delta-potential equally spaced like it is the case in the Kronig-

Penny-Model. But instead of solving the Schrödinger Equation for the Kronig-Penny-Model by 

differentiation, the Schrödinger Equation is integrated yielding the formula |y(x=na)|2 = (E – 

Ekin)/zV0, by whose discussion the existence of the band gap is revealed and confirmed. 

Although the existence of a band gap is already well-recognized, the derivation is novel and can be 

also applied in other field of physics in respect to totally other physical phenomena like high energy 

physics eventually leading to a unified field theory. 

 
 
Introduction: 

Since many decades the existence of an energy band gap in a solid state crystal lattice is well known. 

One of the most common theoretical models for the existence of an energy band gap is explained by 

the Kronig Penney Model assuming the solid state crystal consists of a lattice of Delta-potential 

equally spaced to one another. By solving the Schrödinger equation two different solutions are possible 

each representing another energy level revealing the existence of an energy band gap. 

The existence of energy bands and energy band gaps in solid crystal matters are vastly 

theoretically discussed and experimentally confirmed in the last decades [1] – [4]. 

 
 
Theoretical contemplation: 

It is assumed that the solid state crystal consists of a lattice with equally spaced Delta- potentials 

V0d(x=na) with a lattice constant a. Thus the Delta potentials stand for the positively charged atomic 

cores situated at the lattice positions of the solid state crystal. The electrons described by the 

probability distribution |y(x)|2 are located either between two
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-¥ 

 

adjacent atomic cores (or Delta potential) or at the sites of atomic core (Delta potential). For 

simplified reasons it is assumed that exactly one electron is located between two Delta 

potentials. 

Thus the corresponding Schrödinger equation is as followed: 
 

 
ℏ2	

																																-		2m		∆ψ	+	V0	∑	δ(x+na)	ψ	=	Eψ																																

(1)	
n=-∞	

	
	

But instead of solving the Schrödinger equation by an complex exponential function leading 

to the dispersion relation, now the Schrödinger equation is integrated from -¥ to +¥ after 

having been multiplied with the complex conjugated y*: 

																														
	

ℏ2		         oo	

																											−	2m					∫			ψ	∗	∆ψ	dx	+	V0	∫				∑		δ(x	+	na)	ψ	∗	ψdx	=		∫			Eψ	∗	ψdx						
(2)	

																	n=-oo	

	
In consideration of y*y(a) = |y(a)|2, the normalization ∫¥ ψ*ψdx	=1, the definition of the 

dirac Delta distribution		f(a) = ∫      
∫ 	

𝛿	(x	−	a)f(x)dx	and the assumption that y = y (x)  is 

overall a steady and differentiable function, a short calculation yields the formula: 

                     Ekin+V0 S|y(x=na)|2  = E   or   S|y(x=na)|2  = (E - Ekin) / V0                  (3)               	

Now it is assumed that between every two adjacent Delta potentials exactly one electron is 

located. So due to S|y(na)|2  = z (summarization above all Delta potentials): 

 
                            |y(x=na)|2  = (E – Ekin)/zV0                                  (4)                   																																																																 
	

This formula can be interpreted as follows: the probability density |y(x=na)|2 of an electron at 

the Delta-potential d(x=na) is maximum, if the kinetic energy is zero, while the electronic 

probability density |y(x=na)|2 at the Delta-potential d(x=na) is minimum, if the total energy E 

is equal to the kinetic energy Ekin. 
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Now the electronic probability density |y(na)|2 is drawn against the kinetic energy Ekin, thus 

due to |y(na, Ekin)|2 = (E - Ekin)/zV0 = E/zV0 - Ekin/zV0 this yields a linear graph with a 
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negative slope m = -1/zV0 and with a y-intercept b = E/zV0 as shown in Fig. 1. 
Thus we discuss the graph as follows: the zero point of the graph (point of intersection 

between the graph and x-coordinate (axis of abscissae)) is denoted as E0, then the physically 

reasonable solutions are located in the area between 0 ≤ Ekin ≤ E = E0 between the minimal 

kinetic energy Ekin = 0 (the kinetic energy Ekin  is zero) and the maximal kinetic energy Ekin  = 

E = E0 (kinetic energy Ekin is equal to the total energy E). Beyond Ekin = E0, that means in the 

area of Ekin > E0, the solutions are not reasonable, because firstly the kinetic energy Ekin must 

not be higher as the total energy E and secondly |y(na)|2 must not become negative. On the 

other hand, the area Ekin < 0 is also physically forbidden, because the kinetic energy Ekin must 

not become negative either. At Ekin = 0, the probability distribution |y(na)|2 at the Delta 

potential d(x= na) becomes maximal, while at Ekin = E (total energy E is equal to the kinetic 

energy Ekin), the probability distribution |y(na)|2 at the Delta potential d(x= na) becomes 

minimal or to be more precise, it becomes zero. 

 
Now we can distinguish between several cases: 

In the first case we assume E = Ekin, that means the total energy E is equal to the kinetic 

energy Ekin. As mentioned above, the probability distribution |y(x=na)|2 is zero at the Delta 

potential x = na, that means no electron is located at the Delta potential. Consequently, the 

electron is located not at the positively charged lattice atomic cores, but it is located between 

them due to the normalisation condition òy*ydx = 1 as shown in Fig. 2. Consequently, the 

probability density |y(0 < x < na)|2 betweent two adjacent Delta potentials is maximum, so the 

first case describes the state of lowest energy. 

In the second case the kinetic energy Ekin is gradually reduced thus yielding E < Ekin < 0, the 

probability density |y(x=na)|2 at the Delta potential x = na is increasing steadily and linearily 

as shown in Fig. 3. So the probability density |y(x=na)|2 at the sites of Delta potentials x = 0, 

x = a and x = na is small, but not negligible any more, while the probability density |y(0 < x < 

na)|2 between two adjacent Delta potential becomes smaller. 
In the third case, the kinetic energy Ekin is further reduced, thus the probability density 

|y(x=na)|2 at the Delta potential x = na is further rising, so |y(x=na)|2 at the sites of Delta 

potential becomes significant, while the probability density |y(0 < x < na)|2 between two 

adjacent Delta potentials is further reduced Fig. 4. 

In the fourth case, the kinetic energy Ekin is still decreasing and the probability density 

|y(x=na)|2 is still rising, until the probability density function x: x -> |y(x)|2 becomes constant 
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Fig. 5. This case marks a turning point, because now the probability density |y(x=na)|2 at the 

sites of Delta potential becomes larger than the probability density |y(0 < x < na)|2 betweent 

two adjacent Delta potentials (fifth case, see Fig. 6). 

In the sixth case Ekin is equal to zero and so Ekin attains its minimum value, consequently 

|y(x=na)|2 reaches its maximum value E/zV0, while the probability density |y(0 < x < na)|2 

between two adjacent Delta potentials becomes minimum or even zero (sixth case, see Fig. 

7). That means that the probability density |y(x=na)|2  at the sites of Delta potential is equal 

to E/zV0. In this situation, the electron is located at the positively charged atomic cores of the 

solid lattice (the sixth case describes the state of highest energy). 

Although, in the third, fourth and fifth case (Fig. 4-6) a normalisation problem occurs: because 

the third, fourth and fifth case does not match with the normalisation condition 

òy*ydx = 1. This can be very well observed in the fourth case (see Fig. 5 and 8): the 

probability density function x: x -> |y(x)|2 is constant and thereby delocalisated throughout 

the entire lattice; that means it reaches theoretically from infinity to infinity. In order to 

comply with the normalisation condition, the probability density |y(x)|2 must become almost 

zero as it is shown in Fig. 8. Although this is mathematically not forbidden, this does not 

make any physical sense. Consequently, while the first case (Fig. 2) is physically allowed 

and senseful (low energy) and while the sixth case (Fig 7) is also physically allowed and 

senseful (high energy), the fourth case is forbidden physically (medium energy), which is 

equivalent to the existence of an energy gap in a solid state lattice. 

 
 
 
Conclusion: 

The existence of an electronic band gap in a perfect solid state crystal  lattice has been shown 

theoretically by another way: The Schrödinger Equation of such a perfect solid state crystal 

lattice (Kronig-Penny-Model) has been integrated instead of being differentiated. Thus 

equation Fig. 4 |y(x=na)|2 = (E – Ekin)/zV0 is yielded which can be interpreted as a proof for 

the existence of an electronic band gap in such a solid state crystal lattice. This formula and 

interpretation can be supposed to be relevant also for another fields of physics like unified 

field theory: the string theory deals with the unbounded strings vibrating freely, while the loop 

quantum gravity theory is about quantized space and time. Now one can combine both 

theories: by putting the freely vibrating strings into a quantized elementary space unit, the 

strings become vibrating in a bounded state with discrete energy levels yielding the above 
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described formula. Now it depends on the vibration energy level if the string is a photon 

(light) or it forms matter. 
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Caption: 

Fig. 1: The electronic probability density |y(x=na, Ekin)|2 is drawn against the kinetic energy 

Ekin  yielding a linear graph with the slope of -1/zV0 and an y-intercept of E/zV0 

 
Fig. 2: The electronic probability density distribution |y(x, Ekin)|2 inside of an array of Delta 

potentials (representing the positively charged atomic cores forming a perfect solid state 

crystal lattice) is shown; in the case of Ekin = E: the electronic probability density 

distribution |y(x=na, Ekin)|2 is zero at the site of any Delta potential d(x=na), while the 

electronic probability density distribution |y(0 < x < na, Ekin)|2 is maximal in the space 

between two adjacent Delta potentials d(x=na) 

Fig. 3: in the case of Ekin decreasing and thus a little bit smaller than E: |y(x=na, Ekin)|2 is small, 

but not zero at the sites of Delta potential, while |y(0<x<na, Ekin)|2 is slightly decreasing 

between two adjacent Delta potentials 

Fig. 4: in the case of Ekin further decreasing: |y(x=na, Ekin)|2 is further increasing at the sites of 

Delta potential, while |y(0<x<na, Ekin)|2 is further decreasing between two adjacent Delta 

potentials 

Fig. 5: in the case of Ekin continues to decrease: |y(x=na, Ekin)|2 is increasing at the sites of 

Delta potential, while |y(0<x<na, Ekin)|2 continues to decrease between two adjacent 

Delta potentials, until |y(0<x<na, Ekin)|2 is equal to |y(x=na, Ekin)|2 and the electronic 

probability density function x: x -> |y(x)|2 becomes constant 

Fig. 6: in the case of Ekin still continues decreasing: |y(x=na, Ekin)|2 continues increasing at 

the sites of Delta potential, while |y(0<x<na, Ekin)|2 continues decreasing between two 

adjacent Delta potentials, thus |y(x=na, Ekin)|2 becomes larger than |y(0<x<na, Ekin)|2 

Fig. 7: in the case of Ekin = 0: |y(x=na, Ekin)|2 is equal to E/zV0 and thus maximal, while 

|y(0<x<na, Ekin)|2 is equal to zero and thus minimal 

 

Fig.8:  In this case 1x (x)12  is nearly equal to zero and is thus unphysical.
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